Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。 Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
Input
本题目包含多组测试,请处理到文件结束。 对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 除了这M组关系,其他任意两人之间均不相识。
Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
Sample Input
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
Sample Output
Yes Yes
题目意思是要每个人都相互认识,并且可以在7个以内可以相互认识。
思路:其实这就是一个最短路问题,我们可以把每个人都计算 一次看是否满足要求。
#includeint map[105][105],node[105],s[105],n,INF=100000000;void set_1(){ for(int i=0;i map[tm][j]+node[tm]) node[j]=map[tm][j]+node[tm]; if(min>node[j]) { min=node[j]; m=j; } } if(s[m]==0) { if(min>7)break;//超出认识的范围,不满足要求跳出 k++; s[m]=1; tm=m; } } if(k==n)//当s集合中有n个人,说明起始的人认识所有的人,反回1 return 1; return 0;}int main(){ int m,a,b; while(scanf("%d%d",&n,&m)>0) { set_1(); while(m--) { scanf("%d%d",&a,&b); map[a][b]=map[b][a]=1; } int i; for( i=0;i